®

CMMI Supports Enterprise-Wide Process Improvement

The success of a

project is often depen-

dent on the organiza-

tional processes and

capabilities that cut
- 4y across multiple disci-
| d plines. Several organi-
zations already use one or more Capabil-
ity Maturity Models (CMMs) to guide
their process improvement efforts. How-
ever, process-related CMMSs have lacked
integration among disciplines, and pro-
cess assessments have been known to
result in inconsistent findings. Improve-
ment efforts based on unique CMMs
have resulted in suboptimization, confu-
sion, and potentially unnecessary ex-
penditure of process improvement re-
sources [1]. These are some of the
driving needs for the current collabora-
tive effort to integrate CMMs (dubbed
CMMI) that is sponsored by the Office
of the Secretary of Defense for Acquisi-
tion and Technology, with participation
by other government organizations, the
Software Engineering Institute, and
industry.

The CMMI team will produce a set
of integrated products to support process
and product improvement. It will in-
clude a framework to generate CMMI

Capability Maturity Model and CMM are regis-
tered trademarks of Carnegie Mellon University.

o

products, individual capability models,
training and assessment products, as well
as a tailoring guide, and a glossary to
reflect common terminology among
disciplines [2]. The CMMI team will
develop a framework that will generate
both staged and continuous capability
models as explicitly specified in the
CMMI “A” specification. The CMMI
product suite is intended to preserve
government and industry process im-
provement investments, enhance use and
generation of multiple models, and
accommodate considerations for consis-
tency with Department of Defense di-
rectives and industry (Electronic Indus-
tries Alliance) standards as well as
support international standards.

By integrating process areas among
disciplines, the CMMI will better sup-
port the institutionalization of enter-
prise-wide process improvement, cutting
across disciplines that are often compart-
mentalized within organizations. The
Federal Aviation Administration has
already demonstrated the value of using
continuous representation of an inte-
grated CMM with staging guidelines
(http://www.faa.gov/ait/sepg). The use
of continuous representation with stag-
ing guidelines leaves it to organizations
to decide priority and ordering of pro-

Apache Lessons in Acquisition Management

| read with interest “Slaying the
Software Dragon,” (CrossTaLK, May
1998) especially the figures that indi-
cated an underwhelming response to the
course offerings. | offer a slightly differ-
ent viewpoint and analogy: Approxi-
mately 100 years ago, the U.S. Cavalry
found itself unable to effectively deal
with the Apache. The Army’s tactical
leaders (managers), having studied tradi-
tional war fighting (management), were

2 CrossTALK The Journal of Defense Software Engineering

having trouble understanding a “differ-
ent” enemy (software development). The
most effective response was not to try to
make each of its tactical leaders (acquisi-
tion managers) into an effective tracker,
but to hire the enemy: Apache Indian
scouts. Today, we call these independent
validation and verification agents (soft-
ware projects) or validation, verification,
and accreditation agents (software mod-
els)—experienced developers hired to

Lt. Col. Joe Jarzombek
ESIP Director

cesses to improve based on business
objectives. It facilitates, through staging,
a summarization of organizational matu-
rity level based on experience with suc-
cessful process improvement priorities.

Industry is a major proponent and
participant in this CMMI effort, and
industry involvement is increasing in the
number of CMMI stakeholder review-
ers. There are opportunities for partici-
pation in CMMI pilot projects planned
to start in January 1999 that offer ben-
efits to organizations. Those interested
in learning up-to-date information
about the CMMI, reviewing CMMI
frequently asked questions, or who de-
sire to participate in CMMI pilot
projects should go to the SEI Web site,
http://www.sei.cmu.edu, and select the
CMM section. O

References

1. Schaeffer, Mark D., “Capability Matu-
rity Model Process Improvement,”
CrossTaLk, Software Technology Support
Center, Hill Air Force Base, Utah, May
1998.

2. Schaeffer, Mark D., Philip Babel, Jack
Ferguson, et al., “Overview of the Inte-
grated Capability Maturity Model
(CMMI) Development Project,” panel
presentation, Tenth Annual Software
Technology Conference, Salt Lake City,
Utah, April 22, 1998.

search through the horse dung (docu-
ments) left by the enemy (developer) to
try to fathom the enemy’s intent (look
for the issues, weaknesses, problems, etc.,
behind the smoke, mirrors, hand wav-
ing, and slideware).

Perhaps we should look at ways to
use these individuals more effectively.

Joe Saur
Fort Monroe, Va.

July 1998

Rules a Program Manager Can Live By
Getting Back to the Basics

Col. Wayne M. Johnson
U.S. Air Force

Program managers who focus on customers, money, and common sense are
more likely to succeed than those who do not. This article offers 10 basic steps
toward better program management that emphasize those three points of focus.

ith acquisition reform,
reengineering, downsizing,
rightsizing, and old-fash-

ioned turmoil, a lot of interest from
public and private sectors now focuses
on how we, as program managers, do
business. Because of this increased focus
and interest, many organizations are
attempting to quantify what they do.

In response to this growing inter-
est, my experience and that of many
other program managers tells me we
need to get back to the basics:

» What are we doing?
» How are we doing?
« How do we know?

Instituting planning charts, finan-
cial summary charts, and color-coded
risk and status charts are not by them-
selves marks of progress. The team
must understand and use the material.
To do that, we need to employ the
basics—planning a solid program
using common sense and sound man-
agement techniques.

Some organizations appear to have
lost sight of that. They are doing solid
planning from a technical perspective
but not applying those same disciplined
techniques to the business side. The
tools we use to plan, organize, and evalu-
ate should be just that—tools ... but not
an end in themselves. The rules that
follow are not new, exciting, or particu-
larly insightful, but they work, and may
help you avoid some of the problems
and pitfalls in getting the job done.

This article is based on an article that first ap-
peared in Program Manager, November/Decem-
ber 1997.

July 1998

Step 1 — Do Not Try to Impress
People by Building a Better
Mousetrap

In trying to express this concept in
ways that are new and different, words
fail me. Tired old phrases come to
mind such as “Don’t reinvent the
wheel,” and “Don't fix what isn't bro-
ken"—neither of which is likely to
hold anyone’s attention. Regrettably,
there is no fascinating way to say what
we all know to be true: The institu-
tional resistance (inertia) of “not in-
vented here” needs to be addressed
upfront. Think about it. Why not
borrow a good idea from another of-
fice, give the originator credit, improve
the process or idea, and move on? This
is much more efficient and productive
than trying to come up with that one
“brilliant idea” yourself.

With this philosophy in mind,
keep an eye out for good ideas in your
organization. As the old saying goes,
“You'd be surprised what you can ac-
complish if you don’t mind who gets
the credit.” So see what works, and
keep it. If what you are doing or what
you have tried is not working, start
with Step 2.

Step 2 — Know Who the
Customer Really Is

The customer is the one who is put-
ting up the financial resources, right?
Most of the time. As an example, the
customer for U.S. Air Force fighters
and bombers is the Air Combat Com-
mand (ACC). But when it comes to
developing requirements, the acquisi-

tion community is ACC’s customer. If
the war fighter’s requirements are not
nailed down, how can you acquire a
system that they will be happy with?
Moreover, if the requirements con-
stantly change and customers do not
seem to know what they want, we have
“requirements creep.” And depending
on who is in the meeting, require-
ments creep may be a noun or a verb.

Once your customer has under-
standable and definitive requirements,
you must know what the cost, sched-
ule, and performance parameters are
and baseline the program. Without it,
you will not be able to communicate
what is required to successfully fulfill
the requirement, and others will not
know what to expect in return. Put
another way, a baseline serves as the
vehicle to establish and track a com-
mon set of expectations. When devel-
oping a program baseline that incorpo-
rates cost, schedule, and performance,
do not forget that your project inte-
grates with many other products and
processes such as training, spare parts,
or maintenance equipment.

Some people develop a baseline as a
document. | like to think of it as a set
of briefing charts (which helps me stifle
my verbosity). Perhaps you will find, as
I did, that most of the benefit of a
simple baseline document (I recom-
mend Kkeeping it to six to eight charts)
is in building it and coordinating with
all the affected agencies, including the
customer. As a forcing function, the
baseline applies discipline in bringing

CROSSTALK The Journal of Defense Software Engineering 3

Project Management

the program together and ensures that
its strategy is supportable.

Step 3 — Get a Second Opinion
Suppose you went to the doctor for a
standard check-up and received a dire
prognosis. You would likely seek a
second opinion. Likewise, if your pro-
gram receives word that it has a sud-
den illness, but it seems fine, get a
second opinion. | know of a program
manager who went ballistic after hear-
ing that a piece of government-fur-
nished equipment (GFE) was not
going to be available for his program.
After being yelled at by the customer,
he finally had to elevate it to his super-
visor. The supervisor then called a
different “expert” point of contact and
found there was plenty of the GFE
item available.

The lesson to be learned from this
true situation again takes us back to
the basics. When things unexpectedly
look bad, get a second opinion. The
same is true for those times when you
believe things are headed the wrong
direction and your single point of
contact says, “Don't worry, be
happy”—qget that second opinion.

Step 4 — Realize All Software
Development Is Moderate Risk
“What you see is not always what you
get” is a general rule of software devel-
opment. Although debugging and
testing a program may reveal many
hidden problems, these actions alone
cannot guarantee that all problems are
detected. Historically, software has
proven itself difficult to scope and
insidiously susceptible to requirements
growth. Keep this axiom in mind:
“The more complex your solution, the
more vulnerable it is to simple prob-
lems.” Be wary of magicians who
claim that previously discovered hard-
ware problems can be fixed with a
simple software modification. One
senior program director once told me
his rule of thumb: No matter where
you are in software development, you
are always two years behind schedule
and need twice as much money. Ex-
pect it, plan for it, and manage it.

4 CrossTALK The Journal of Defense Software Engineering

Step 5 — Know Your Program’s
Status
Many organizations use color codes to
communicate the status of the project.
I have always been fascinated by the
variety of definitions and the finite
detail program managers use and con-
fuse to define whether a program,
project, or functional area is “green,”
“yellow,” or “red.” Depending on the
management philosophy of the organi-
zation, green, yellow, or red is usually
the program manager’s assessment.
For example, problem N may be
coded different colors by different
program managers. If the program is
one month behind, do you evaluate it
red, yellow, or green? The color de-
pends on when the customer needs it.
Following are three simple definitions
to consider when preparing color-
coded future assessments.

« If the program or project fills your
day, keeps you challenged, and is a
reason why they need you in gov-
ernment service, the program is
green.

« If you ponder the day’s events on
the drive home and know that your
boss will be irritated to hear from
someone other than you about the
latest “fun” you are having, the
program is yellow.

« If you find yourself waking up in a
cold sweat in the middle of the
night considering other employ-
ment options, hoping that your
boss can help you fix all the prob-
lems, the program is red.

Step 6 — Follow the Money
Everything you do is connected to
money, and if you did not control the
funding no one would pay any atten-
tion to you. Start thinking of financial
planning documents as program man-
agement planning documents because
that is what they are. Always be famil-
iar with your financial situation. For
example, | have seen unintentional
problems arise when several functional
areas believed they were entitled to the
same chunk of money but did not talk
to each other about who really owned
it. If you depend on too many good
things to happen to be successful, you

probably will not be. If you are not
managing the money, you are not
managing the program. That is always
the bottom line.

Step 7 — Summarize Meetings
Have you ever sat through a one-hour
meeting listening to all the attendees
speak their mind? At the end of the
meeting, with 15 suggestions from six
people, it is difficult to know who
plans to do what unless the program
manager summarizes for the group
what the course of action will be. If, at
the end of your meeting, you have not
summarized a plan of action, you
might find yourself rescheduling an-
other meeting. Get into the habit of
summarizing each meeting and save
time, effort, and a lot of headaches
down the road.

Step 8 — Use the “Aunt Agnes”
Test

A situation develops that requires you,
the program manager, to make a deci-
sion. But does the course of action you
are about to select make sense? In
acquisition, we have surrounded our-
selves with processes, integrated acro-
nym lists (1IAL), and program manage-
ment review teams, all of which can
deprive us of our common sense.

I have been taught to use this
simple test: Pretend you have an Aunt
Agnes who owns a farm in lowa, where
she grows corn. Can you explain the
program and your decision to her?
Would she understand it? Does it
make sense? Can you defend the
course of action to her? If the answer
to any of these questions is “no,” re-
think your strategy because you are
about to lose your way. And do not
bother look up IAL—I made that up
to show how unnecessary complexity
will only confuse Aunt Agnes and your
customer.

Step 9 — Make a Decision

We have all sat through meetings
where a detailed, insightful discussion
about the pros and cons of a project
occurred to the nth degree. But in the
end, no one knew what course of ac-
tion to which the program manager

July 1998

agreed. What did he want? Did she
say, go ahead? The difference between
the program manager and a lot of
process-oriented staff help is that you
are required to make decisions. Do not
forget that. If you do, you will be
without a job.

Sometimes no decision is the worst
decision. Be careful not to get caught
in this type of organizational paralysis.
One senior leader once advised that
“you need to go into the job assuming
you have already been fired—only
then will you be willing to make the
right decisions.” Take in the important
details, look at the alternatives, under-
stand the options, then make a deci-
sion and move on.

Step 10 — Manage, Do Not
Micromanage

Stay focused on the goals and ideas
that are important to you, and stick to
the basics. Watch the details without
micromanaging your team. You cannot

Rules a Program Manager Can Live By: Getting Back to the Basics

always be there to answer the ques-
tions, so make sure your team knows
what is going on. Treat everyone with
respect. And have fun.

Being a program manager is a lot
like being a utility infielder in baseball.
You know what will make your effort
successful, and you have a team of
functional experts to help you along
the way. Let them know what you
expect from them, and chances are
they will not let you down. Remember,
these jobs are 10 percent expertise and
90 percent common sense. To win the
game, stick to the basics, focus on your
goal, and rely on teamwork.

Keep It Simple

You do not get paid more for making
it complicated, so stick to the basics.
The tools for becoming a more effec-
tive program manager that | have out-
lined in this article are quite simple.
Every one of us has thought of them,
but the working process can still be

confusing. When you think you are
losing control of a project, check to see
if you are following these tips.
Chances are you will quickly recognize
how to fix it. O

About the Author

Col. Wayne M. Johnson was formerly
chief of F-16 Programs for Turkey, Aero-
nautical Systems Center (ASC), Wright-
Patterson Air Force Base, Ohio, where
he managed the 240 aircraft, Foreign
Military Sales Turkish F-16 weapons
system. A command pilot with 2,800
hours of flying time, Johnson was the
1995 winner of the Air Force Associa-
tion/ASC Sylvester Award for Program
Management. In 1996, he graduated
from the Advanced Program Manage-
ment Course, Defense Systems Manage-
ment College. He is currently program
director at the Joint Airborne Signals
Intelligence Program Office.

Voice: 937-255-9968 DSN 785-9968

Rocky Mountain Higher Education

Join the Software Technology Support Center’s (STSC) Sys-
tems Engineering and Development team in Park City, Utah
for two sessions, the first in Sep- ¢
tember 1998 and again in Octo-
ber 1998 for System Engineering
Miniworkshops. Workshop topics
include risk management, system

engineering requirements, reviews,
testing, metrics, and object-ori-
ented Unified Modeling Language.
The workshops are available to
government organizations, and
government room rates will be
available.

The workshop dates are Sept.

System Engineering

SR =y
=

=

21-30 and Oct. 19-28. Instructors are the STSC Systems En-

gineering and Development team (Les Dupaix, Dave Cook,

and Jim Van Buren).

July 1998

Cost per person will be based on the courses attended:
one day, $300; two days, $550; three days, $800; five days,

$1,300; eight days, $2,000. Group dis-
counts are available. Students are re-
sponsible for travel costs. Funding is via
avalid intergovernment organization re-
imbursable funding document, such as
an Air Force Project Order Form 185 or
a Military Interdepartmental Purchase
Request (DD Form 448). Funding ques-
tions should be directed to the STSC
funding point of contact, Dan Arnow,
at 801-775-2052 or DSN 775-2052.
Contact the STSC for schedule in-
formation and cancellation policy.

Les Dupaix 801-775-5555 ext. 3088 DSN 775-5555 ext. 3088
Dave Cook 801-775-3055 DSN 775-3055

Jim Van Buren DSN 801-775-3017 DSN 775-3017

CRrossTALK The Journal of Defense Software Engineering 5

The Softer Side of Project Management

Janice Strauss
National Security Agency

Many project managers limit themselves to techniques they have acquired through for-
mal channels, which decreases their chances for success. I contend that there are many
“softer” techniques available that have a great impact on a project. In this article, |
share some of the techniques I use to increase the likelihood of achieving project goals.

Typical ly found in the toolbox
of project management are tech-
niques for cost estimation, risk
management, meeting staff require-
ments, and establishing work break-
down structures. These techniques
represent essential project management
skills usually acquired through formal
courses, reading, or on-the-job training.
These learning methods often overlook
the “softer side” of project manage-
ment. Understanding this side consti-
tutes yet another tool just as critical to
project success as more formal ones. A
manager’s ability to effectively maintain
morale, motivate the team, and use
resources determines whether team
members have a sense of pride in their
project and feel ownership of it.

This article highlights some tech-
niques | have used to address the human
side of project management. Some focus
on ensuring everyone on the team feels
comfortable with their role. Others
establish and maintain good team mo-
rale. All help a project maintain momen-
tum toward a successful conclusion.

Soft Project Management
Techniques

A new project is about to commence.
The team consists of senior engineers
and computer scientists, all with many
years of experience in the tools that will
be used on the project. This team also
has a history of working together and
keeping one another well informed. “A
dream team,” you think to yourself,
and with good reason. Such a team is
not likely to be found in the real world.
It is much more probable that a project
will have a blend of junior and senior
employees with varying experience
levels. Furthermore, the team will prob-
ably have little history with one another

6 CrossTaLk The Journal of Defense Software Engineering

and with the technologies, thus requir-
ing much groundwork to initiate the
project.

Pair Team Members
Getting junior employees comfortable,
up to speed, and productive quickly is
definitely a challenge. Formal training
helps, but this requires time and money
that may not be available. In this situa-
tion, I pair junior, inexperienced team
members with those who have more
expertise. Junior persons may shadow
their mentors, observing and studying
their behavior, or the pairs may work on
a task together, with the senior person
handling the more difficult aspects and
serving as a mentor to the junior person.
This technique pays for itself in the
long run. On one project, a new devel-
oper initially played the junior role for
a few months. When another inexperi-
enced person joined the team, the first
was able to move up to the senior role
and successfully served as mentor. This
transition was a source of great pride to
the entire team.

Ensure Expert Technical Support
Dealing with today’s world of con-
stantly changing technologies can make
any reputable manager cringe. No
sooner has one committed to a suite of
tools than a new and better solution
becomes apparent. In the case of tech-
nologies like Java, new releases occur at
short intervals—a daunting prospect
for developers. On one of my projects,
the team chose Java for its many advan-
tages including hardware independence
and enhanced programmer productiv-
ity, yet no one on the team had previ-
ously used this language. To manage the
risk involved, | took steps to ensure that
expert technical support for Java was

available and accessible to the team.
This came in two forms: First, | hired a
Java mentor who provided guidance to
the rest of the team, introduced new
Java tools, and reviewed all Java soft-
ware. Second, team members were also
encouraged to maintain a close relation-
ship with the vendor to stay aware of
the latest developments and to provide
them with requirements for new fea-
tures. With this strategy in place, Java
increased the team’s productivity rather
than proving to be an obstacle.

Assign People with Care

Have you ever felt that management
views developers as interchangeable
game pieces they can arbitrarily move
between projects? Many times, | have
seen people placed in critical positions
based on their job title rather than their
skills. Putting team members in posi-
tions they cannot handle usually leads
to negative consequences in terms of
schedule, quality, and productivity. Just
because a person is hired as senior com-
puter scientist does not mean that per-
son can take on every task successfully
and with little monitoring. Admittedly,
there will be times when it is necessary
to assign team members to tasks for
which they do not have the right exper-
tise. I do this with caution—only with
people who have proven track records
and in whom | have great confidence. |
do not expect those with newly ac-
quired skills to take on critical or com-
plex tasks.

Consider work habits when assign-
ing tasks. Some people work faster than
others, thrive on challenge, and with-
stand pressure well. Others proceed at a
more cautious pace and prefer to work
on the familiar. Take all these factors
into account to prevent situations in

July 1998

which employees are frustrated with
their assignments and cannot make a
contribution.

Build a Project History

Every project uses a schedule to com-
municate its milestones and to guide
development efforts. This provides a
means to monitor progress. It is crucial
to create a schedule that is both realistic
and accurate. There are many docu-
mented techniques to scientifically do
this. These include estimation tech-
niques such as Constructive Cost Mode
(COCOMO), Delphi Techniques, and
Gantt Charts.

When | was faced with developing a
schedule for my last project, COCOMO
was suggested as a useful technique. But
COCOMO requires parameters such as
lines of code, which were not at my
disposal. Past performance also might
have been a useful predictor, but most of
the project team was new—to both each
other and the technologies. So | decided
to build a project history, albeit a brief
one. The team worked without a sched-
ule for about three months. Throughout
this period, we closely monitored and
recorded progress on assigned tasks.
Both the team members and | gained a
sense of each person’s capabilities, and
we based our schedule on this knowl-
edge. | met with team members to
review their assigned tasks and to esti-
mate how long each task would take.
We compared performance to these
estimates on a weekly basis. Within a
few months, team members could pre-
dict their progress with precision.

There were other benefits derived
from this schedule-building technique.
The team became intimately aware of
the schedule and regularly consulted it.
Also, the schedule had buy-in from all
members because the team built it. As a
result, motivation to achieve milestone
dates was extremely high.

Minimize Meetings

In the life of a project, it is a rare day
that does not include at least a few
meetings. No matter how justified their
purpose, meetings tend to steal valuable
time from designing and developing a
product, which is the real business at

July 1998

hand. Most team members would
rather be doing their “real” work and
regard meetings with disdain. To com-
bat this bombardment of meetings, one
solution is obvious: minimize their
number.

This is not a trivial feat. Gathering
requirements, participating in design
and code inspections, attending rel-
evant briefings, and taking part in sta-
tus reviews are essential software project
activities. | handled this challenge by
requiring only a small subset of the
entire team at different meetings. For
instance, inspections included only the
people necessary to ensure coverage in
the areas of databases, programming
languages, logic, or quality assurance.
Sometimes a desk review took the place
of an inspection. A few team members
had dedicated roles; | designated one to
be the customer interface and he repre-
sented the team at all requirements
meetings.

The exception to this policy is
project status reviews. Valuable infor-
mation-sharing and coordination of
tasks occurs at these reviews, so atten-
dance by all team members should be
mandatory.

Keep the Team Satisfied

The magic bag of project management
tricks amounts to naught without the
team’s dedication and enthusiasm.
These people put in long, hard hours to
get a product out the door. The project
manager must create a stress-free, posi-
tive work environment. Techniques that
foster such an atmosphere include
showing appreciation, injecting humor
whenever possible, and empowering
team members.

Project managers should take every
opportunity to show their appreciation.
The power of cash awards is undeni-
able, yet these may be unavailable for
fiscal or contractual reasons. For teams
that consist primarily of contractors for
whom cash awards are not available,
another way must be found to inform
their companies of their superior ef-
forts. At significant milestones, |
awarded individuals letters of apprecia-
tion and sent a copy to their supervi-
sors. In all cases, the employees and

The Softer Side of Project Management

their companies were delighted to re-
ceive this recognition.

A little humor goes a long way and
should be dispersed in large doses.
When an early prototype neared
completion, software samples from each
team member were analyzed by the
Software TestWorks tool, which rates
programming style and performs cover-
age analysis. Much to my delight, all
code received high marks. To celebrate
this achievement, | awarded the pro-
grammers a mock Certificate of Excel-
lence for their efforts. Another light
moment occurred during testing when
the team was on an emotional roller
coaster. To alleviate the tension, | de-
cided to recognize the person who was
responsible for the hundredth software
discrepancy. Everyone eagerly antici-
pated this event, and when it finally
occurred, | presented the team member
with a token of appreciation. Although
work continued uninterrupted, these
light moments lifted the cloud of stress.

Empowering team members reaps
many benefits. It provides them with
ready access to all the information they
need to do their jobs. Within well-
defined boundaries, | allowed develop-
ers to directly contact customers and
vendors when the situation called for it.
Not only did this free me for other
activities, but also fostered a trusting
environment in which the team felt
both unfettered and motivated.

Conclusion

In today’s pressure-cooker environment,
projects need all the help that can be
mustered. Following a cookbook ap-
proach to project management prob-
ably is not the best recipe for success.
Leaders must use every technique at
their disposal to achieve their project
goals. The tools presented in this article
are meant to complement those usually
found in courses and texts. Project
managers need to select those tools with
which they feel the most comfortable,
while remembering that project man-
agement is as much an art as it is a
science. Keeping more human concerns
in mind will help projects overcome
challenges and attain success. O

CRrOosSTALK The Journal of Defense Software Engineering 7

Project Management

About the Author

Janice Strauss has been employed at the
National Security Agency as a senior
computer scientist for more than 13
years. She has worked in a variety of
positions, most recently as a project
manager. She is also actively involved in

software improvement initiatives within
her current organization. These have
included leading a Requirements Man-
agement Technical Working Group as
well as initiating a Software Process
Information Exchange group, which

provides a forum to trade development
tools, techniques, and best practices.

National Security Agency
9800 Savage Road

Fort Meade, MD 20755
Voice: 301-688-0994
E-mail: gusstr@erols.com

Report from STC '98

The Software Technology Conference (STC), spon-
sored by the U.S. Air Force, Army, Navy, and Marine
Corps, and Defense Information Systems Agency, has
successfully reached another milestone, completing its
tenth annual conference April 19-23 in Salt Lake City,
Utah. This year, more than 3,300 people from 16 nations
met to exchange information, gather ideas, and draw from
presentations by leading experts in software and informa-
tion technology. The conference theme, “Knowledge Shar-
ing — Global Information Networks,” was likewise
reflected in the displays from more than 300 vendors in
the Salt Palace Convention Center Exhibition Hall and
during vendor presentations.

Defense and industry leaders and other professionals
agree, “Outstanding conference! ... STC sets the pace.”
Dr. Helmut Hellwig, deputy assistant secretary for science,
technology, and engineering, Office of the Secretary of the
Air Force for Acquisition, said at the conference, “We
must dedicate ourselves to partnerships of people and
organizations in government, industry, and academia. This
will enable us to continue to manage acquisitions within
the resources available and will also enable industry to
make use of its past performance record, experience in
the software domain or product line, and mature software

8 CrossTaLk The Journal of Defense Software Engineering

development process. This is the tenth year of the annual
Department of Defense Software Technology Confer-
ence. ... The conference provides a very unique opportu-
nity for government, industry, and academia to form
those partnerships vital to achieving software acquisition
success. These partnerships are vital to providing Ameri-
can war fighters the right information in the right place,
at the right time. The conference also provides a time for
professional development, as attendees have the oppor-
tunity to learn more about the many faceted disciplines
of software and information acquisition and engineering.
Both partnerships and professional development are
important aspects of ensuring our forces, industry, and
country are prepared for the challenges that lie ahead in
the new millennium.”

Next year’s conference will continue this tradition and
set the stage for software and information professionals
as we prepare to enter the new millennium. The theme
for STC '99 is “Software and Systems for the Next Mil-
lennium.” The conference co-sponsors look forward to
seeing everyone May 2-6, 1999.

Dana Dovenbarger

Conference Manager
dovenbad@software.hill.af.mil

July 1998

Major Causes of Software Project Failures

Lorin J. May
CrossTaLk Associate Editor

Most software projects can be considered at least partial failures because few projects meet all their
cost, schedule, quality, or requirements objectives. Failures are rarely caused by mysterious causes, but
these causes are usually discovered post-mortem, or only after it is too late to change direction. This
article is based on interviews with software consultants and practitioners who were asked to provide
“autopsies” of failed projects with which they have been acquainted. Although not a comprehensive
compilation of failure causes, this article outlines several areas that should demand your attention.

few years ago marked the

Arollout of what could have been

called a Titanic of military
projects, except the original Titanic was
ahead of schedule when it sank. Hun-
dreds of millions of dollars over budget
and years behind schedule, the first
phase of this huge military system was
finally “tossed over the wall” and over
the top of a network of separate pro-
grams used by thousands of practition-
ers. Although long hampered by quality
problems, big hopes were again riding
on the system once it passed acceptance
testing.

The intended users refused to use
the system. It lacked features they said
were essential to their jobs while requir-
ing steps they considered unnecessary
or burdensome. The project eventually
died a visible, painful death amid litiga-
tion and congressional inquiries.

This failed project was not atypical of
chronic problems in the software indus-
try. According to the Standish Group
[1], in 1995, U.S. government and busi-
nesses spent approximately $81 billion
on canceled software projects, and an-
other $59 billion for budget overruns.
Their survey claimed that in the United
States, only about one-sixth of all
projects were completed on time and
within budget, nearly one third of all
projects were canceled outright, and well
over half were considered “challenged.”
Of the challenged or canceled projects,
the average project was 189 percent over
budget, 222 percent behind schedule,
and contained only 61 percent of the
originally specified features.

Other studies have likewise con-
cluded that failure is rampant, although
not necessarily to the same degree. One

July 1998

reason for the varied conclusions is that
most failed projects are never studied—
even by the organization that experi-
enced the failure. Having wasted so
much on a fruitless venture, few organi-
zations will invest more time or money
to collect and analyze additional data,
whereas any data that had been collected
may be massaged or hidden to protect
careers or reputations. Thus, informa-
tion about project failures often relies
heavily on subjective assessments. This
article is no exception.

For this article, a failure is defined
as any software project with severe cost
or schedule overruns, quality prob-
lems, or that suffers outright cancella-
tion. It is based on interviews with
practitioners and consultants who were
asked to describe the causes of soft-
ware project failures with which they
have been acquainted. If there is any-
thing notable about the interviewees’
diagnoses, perhaps it is that many of
these problems have been documented
for years, but somehow they keep
cropping up. Also worth noting is that
most of the failure causes mentioned
originate before the first line of code
has been written. The failure causes are
listed in no particular order.

Poor User Input

Although the Titanic project mentioned
earlier was riddled with problems, it
ultimately failed because the system did
not meet user needs. According to Paul
Hewitt, a consultant with the Software
Technology Support Center (STSC), the
acquirers and developers of this system
had received most of their requirements
from higher-level supervisors and so-
called “users” who were not regularly

using the existing system. Although “not
invented here” syndrome contributed to
the system’s eventual lack of acceptance,
the bottom line is that the system was
inadequate for its environment.

By contrast, Hewitt has observed
successful programs in which “end users
and developers [were] working together
in the same cubicle.” Although this is
not always possible, Hewitt said projects
are likely headed for trouble unless in-
formed end users are giving meaningful
input during every phase of require-
ments elicitation, product design, and
building. The input needed by these
users has less to do with issues like screen
layouts than with how the system would
be used in the field, according to
Michael Allen Latta, chief executive
officer of Ohana Technologies Corp. in
Lafayette, Colo. He said the user should
be asking, “How do I use it over time?
Does it provide the right tools? What do
| put into it, and what do | get out?”

However, there can also be problems
if the users are too close to the require-
ments. Shari Lawrence Pfleeger, presi-
dent of Systems/Software in Washing-
ton, D.C., had just started consulting on
a large federal system acquisition when
she started to study its requirements,
which were supposedly “clean” due to
the input of highly knowledgeable users.
Even without any prior understanding of
the system or its field environment,
Pfleeger needed only a few hours to see
that the requirements were full of hidden
assumptions and conflicts.

“[The users] didn't think of the con-
sequences of what they were requiring,”
she said. “They assumed that how things
were done in the past was how they
would always be done in the future.”

CROSSTALK The Journal of Defense Software Engineering 9

Project Management

The users assumed the elicitors under-
stood more than they did about the
users’ jobs, but this was not entirely the
users’ fault. All involved parties, includ-
ing the developers, must understand the
business of the other parties. This need
continues throughout development
process. Without this understanding, the
parties “don't even know what questions
to ask,” Pfleeger said, and important
issues fall between the cracks.

Stakeholder Conflicts
A few years ago, a major airline, rental
car company, and some hotel chains
created an incentive plan to give custom-
ers frequent flier-type points to “cash in”
for any of the participating companies’
services. They commissioned a complex
software system to track points and
compensation. Sometime later, the soft-
ware developers needed some clarifica-
tions, i.e., with input A, does the system
choose X, Y, or Z? The stakeholders
could not agree on the answers. Forced
to acknowledge deep incompatibilities
among their business interests, the sys-
tem was canceled in an expensive, liti-
gious failure of the entire enterprise.
The stakeholders had worked under
“the illusion that everyone was going to
get everything that they wanted,” ex-
plained Tom DeMarco, principle of the
Atlantic Systems Guild. They “papered
over their differences” rather than going
through conflict resolution in the early
stages. Their differences were exposed
by the developers because “coders cannot
make an ambiguous system.”
Stakeholder conflicts can play many
different roles project failures. For ex-
ample, “some projects are ultimately
canceled because people don't like each
other,” said Capers Jones, chairman of
Software Productivity Research, Inc.
Other projects fail because the de-
velopers do not know who the “real”
stakeholders are, according to Ed
Yourdon, chairman of the Cutter Con-
sortium. Yourdon worked with a large
mutual fund company that had been
working on a $300 million software
system. The developers had been work-
ing closely with the information tech-
nology vice president, who was per-
ceived to be the primary stakeholder for

10 CrossTaLk The Journal of Defense Software Engineering

the system. When the system ran into
some problems, it drew the attention of
the chief executive officer, who turned
out to be the real stakeholder in the
system even though he had not previ-
ously been involved with it. After seeing
the involved risks, he immediately
withdrew his support for the system.

“No one bothered to ensure that he
was going to support it,” Yourdon
explained. “No one made him aware of
problems while it was being devel-
oped.” Yourdon says many projects fail
because the project leaders do not have
a sense of who will ultimately declare
whether a project is a success or fail-
ure, and then they are “blindsided.”
He said the true stakeholders need to
hear good and bad news in “small
pieces” rather than in “one chunk.”

Other projects, especially smaller
projects within larger projects, never go
anywhere because the internal stake-
holders never agree on priorities. Watts
Humphrey, a fellow at the Software
Engineering Institute, calls these “pre-
tend projects,” meaning a few develop-
ers work on them half time or quarter
time, and nothing is ever delivered.

“They are kidding themselves that
they are working on [these projects],”
Humphrey said. “No one can work
quarter time on a project. ... They
havent faced the need as a management
team to decide what they are really going
to do with it. They need to put real
resources on it” rather than merely pre-
tend the project is under way.

Vague Requirements
Mariea Datiz, president of Peripheral
Visions in Houston, Texas, learned a
hard lesson about what happens when a
project is started while the requirements
are nebulous. The U.S. division of an oil
company hired Datiz’s company to cre-
ate the “first draft” of a program so that
they could impress their European coun-
terparts and justify further funding. But
the oil company officials only had a
general idea of what the program was to
do and tried to revise and refine their
ideas while Datiz's company was work-
ing on the program.

“For every step we would take, we'd
go three backward,” Datiz said. “We

would start down one path and then
have to stop and go down another.”
Project cost and quality quickly went out
of control, her company was blamed,
and she lost the contract to finish the
job. Like many failed projects, the scope
had not been narrowed enough at the
outset to have led to any reasonable
chance for success.

One obvious solution is to establish a
reasonably stable requirements baseline
before any other work goes forward. But
even when this is done, requirements
will still continue to creep. “You can't
design a process that assumes [require-
ments] are stable,” advises Humphrey. In
virtually all projects, there will be some
degree of “learning what the require-
ments really are while building the prod-
uct,” he said. Projects could be headed
for trouble if architectures and processes
are not change-friendly, or if there are
poorly established guidelines that deter-
mine how and when requirements can
be added, removed, and implemented—
and who will shoulder the cost of the
changes.

Poor Cost and Schedule
Estimation

It is unfair to call a project a failure if it
fails to meet budget and schedule goals
that were inherently unattainable. Like
all engineering endeavors, every software
project has a minimum achievable
schedule and cost. Fredrick Brooks sum-
marized this law in The Mythical Man
Month [2] when he stated, “The bearing
of a child takes nine months, no matter
how many women are assigned.” At-
tempts to circumvent a project’s natural
minimum limits will backfire.

This problem occurs any time some-
one “makes up a number and won't
listen to anyone about how long other
projects took,” said Jones. According to
DeMarco, projects are often intention-
ally underbid because of the “attitude
that putting a development team under
sufficient pressure can get them to de-
liver almost anything.”

The opposite is what usually hap-
pens. For example, if a program should
realistically take five programmers one
year to complete, but instead you are
given four programmers and eight

July 1998

months, you will have to skimp on de-
sign time and on quality checks to reach
project milestones.

“Cutting a corner that undermines
the entire foundation of the project is
not cutting the corner,” states Robert
Gezelter, a software consultant in
Flushing, New York. “There will be
heavily disproportionate costs down-
stream.” Skimping leads to weak de-
signs, dramatically higher defect densi-
ties, much more rework, and virtually
endless testing. In the end, the project
will cost more, take longer, and have
worse quality than would have been
possible if a realistic schedule and bud-
get had been followed.

According to Jones, this problem can
be easily remedied. Several estimation
tools on the market can combine numer-
ous variables to provide realistic esti-
mates within a few hours [3], even at the
early critical decision-making junc-
tures—before requirements are firm.

Skills that Do Not Match the Job
Decades ago, Morris Dovey, informa-
tion director for Check Control, Inc. in
West Des Moines, lowa, worked on
major government software contracts
before becoming so frustrated he de-
cided to never work with government
contracting again.

“It was being made artificially diffi-
cult,” Dovey said. The technologists had
to endure what he considered avoidable
delays and mistakes because “decisions
were being made by people with no
technical expertise in the area” but had
all the authority.

Latta warns that managers can per-
form poorly if they lead projects that do
not match their strengths. “Projects
dealing with high technology need man-
agers with solid technical skills,” Latta
advises. In such projects, authority must
reside with people who understand the
implications of specific technical risks.

However, the best technologists are
not necessarily always poised to be the
best managers. “The skill set for man-
agement and programming are disjoint,”
Jones observed. The larger the project,
the more need there is for people with
excellent planning, oversight, organiza-
tion, and communications skills; excel-

July 1998

lent technologists do not necessarily have
these abilities.

Skill-driven challenges are not lim-
ited to management. Poor developers
can sap productivity and make critical,
expensive errors. Generalists can also
poorly perform duties better left to spe-
cialists, such as metrics experts or testers.

The solution to skill-driven chal-
lenges is easy to define but difficult and
expensive to accomplish: Attract and
retain the most highly skilled and pro-
ductive people. “Knowledge is money,”
noted Tom Pennington, senior network
manager for The MIL Corporation in
Arlington, Va. However, there is an
eventual payback. Pennington believes a
team made up of higher-paid people
with the right specialized skills is worth
far more per dollar to an organization
than a group of lower-cost people who
need weeks or months of fumbling
through a new process or technology
before they can start being productive.

“You get what you pay for,” Datiz
echos. “You'll also pay for what you get.”

Jones advises that “if you can't get the
best ‘techies,” get the best managers.” He
said good managers can often get above-
average results from average employees,
whereas great employees can have much
of their potential squandered by medio-
cre management.

Hidden Costs of Going “Lean
and Mean”

DeMarco believes project managers and
technologists are often unfairly blamed
for problems caused by people “two
levels higher.” He believes managers
and technologists are generally compe-
tent and getting better every year, but
they are “goaded” into overtime work
because of “the 1990s stupid flirtation
with lean and mean”—cutting jobs and
expecting the same work with fewer
people and less money, whether such a
feat is possible or not. DeMarco says the
the often-intentional “dishonest pric-
ing” of projects is often off by a factor
of two or four or more, requiring never-
before-seen levels of performance.

“Any failure will be viewed as a direct
result of underperformance,” he charges,
even though underperformance is “not
even a significant factor” in the failure of

Major Causes of Software Project Failures

most projects. Instead, he says, the failed
projects simply had goals that were
inherently unattainable.

Humphrey has observed a different
“lean and mean” problem. In many
“downsized” organizations, he says,
developers are doing their own expense
accounts, clerical work, software up-
dates, and other duties—and at a higher
labor rate and with less skill than could
be performed by support specialists.

He estimates that many software
developers are spending half their work
hours slowly plodding through tasks that
have nothing to do with developing
software. “Software people are very un-
skilled clerks,” he said. “It's an enormous
productivity issue.”

Failure to Plan

Humphrey took charge of commercial
software development for IBM at a point
when the company was taking too long
to finish projects and was missing all its
announced deadlines. “People were
working hard, but no one had plans ...
because no one required them to make
plans,” Humphrey recalls. In response,
he required that a detailed plan be devel-
oped before any release date was an-
nounced. For the next two and one half
years, the division never missed an an-
nounced date.

“If software developers built bridges,
we'd show up at the site with some
scrap iron and say, ‘let’s start building!™”
quipped Reuel Alder, a manager at the
STSC. Alder agrees that inadequate
planning is a major reason software
projects spin out of control.

Humphrey said project managers
often do not plan because “any plan they
put together won't meet the [desired
release] date, so they can't plan.” Even
though detailed planning saves an enor-
mous amount of time in the long run,
Humphrey says many other managers
and developers believe it to be unneces-
sary. “They think time spent on things
like planning, design, requirements, and
inspection gets in the way of real work,
which is coding and testing,” he said.
“This comes from the view of program-
ming that the issue is to get the software
out the door. But there’s a difference
between speed and progress.”

CrossTALK The Journal of Defense Software Engineering 11

Project Management

“We need a lot fewer heroes,” adds
Gezelter. He believes organization “hero-
ics” would frequently be unnecessary if
projects had been properly planned. “We
keep rewarding people for charging off
on suicide missions,” he said.

Communication Breakdowns
When Pfleeger was asked to consult on a
large project that was in trouble, she
asked the managers to develop a process
model for the project. She did not neces-
sarily want the model for her own use,
but wanted the managers to talk to the
developers. Once they did, they realized
the project had gotten so large that the
same code was being tested by two teams
that did not know the other existed.
Such problems are common on
large projects, especially if people are
working at different sites. In many
troubled projects, “there isn't one per-
son who has an overview of the whole
project,” she said. Especially on large
projects, Pfleeger advises that additional
time be taken periodically to have
everyone in every position learn the big
picture. “The people working on the
pieces need to know how their one
piece fits into the entire architecture.”

Poor Architecture

Pfleeger says an example of flexible
architecture is the Patriot missile used
during the Gulf War. It was not de-
signed to intercept scud missiles, but
the software was able to be reconfigured
to support the new function. On the
other end of the flexibility spectrum
was a security program created to pro-
tect sensitive word-processing docu-
ments. Everything worked well for a
few months until the operating system
was updated. The word-processing
programs still worked, but the security
program became useless and unfixable
because much of its code was tied to
operating system features that were
dropped in the new system.

“People didn't think ahead about
what was likely to change,” Pfleeger said.
Architecture must allow for organiza-
tion and mission changes.

Gezelter said software developers
often build with no more forethought
than the man who built a beautiful boat

12 CrossTaLk The Journal of Defense Software Engineering

in his workshop and then could not get
it out the door. “If you do [architecture]
right, no one will ever realize it,” he said.
“But if you do it wrong, you will suffer
death by a thousand cuts. Bad choices
show up as long-term limitations, aggra-
vation, and costs.”

Gezelter suggests viewing software
architecture like house-building:
“Plumb” and “wire” for features and
additions you have not thought of yet.
Then, when unanticipated needs or
business changes arise, you can add or
modify without performing the software
equivalent of “ripping apart the walls
and rebuilding them again.”

Late Failure Warning Signals
Does the following scenario by Yourdon
seem familiar? A schedule and budget
are determined “by edict by people you
were afraid to say no to,” and it is po-
litically unwise either to say or show the
estimate is far from achieveable. All
your early milestones involve diagrams,
designs, and other documents that do
not involve working code. These and
other project milestones then go by
more or less on schedule—at least as far
as upper management can tell—and
testing starts more or less on time. Not
until the project is a few weeks from
deadline does anyone dare inform the
“edict makers” that at the current defect
detection rate, the project will not be
completed even close to its deadline.

“Nobody seems to acknowledge that
disaster is approaching,” Yourdon said,
even among people who sense there is a
problem. “There is no early warning
signal.” Until more organizations aban-
don waterfall-style development in
favor of processes that demand early
working code or prototypes, he says this
scenario will continue to be familiar.

Yourdon says the above problem is
also extremely common with year 2000
work. He believes many year 2000
conversion teams, if they were allowed,
would say of their current situation:
“Within this limited time and pitiful
budget and understaffed team, sure, we
can deliver it on time—with a million
bugs in it.”

In a perfect world, lower-level people
could convince upper-level managers

that their edicts are unworkable before
the project got under way. But until this
happens, Yourdon says development
cycles need to be adopted that allow you,
at the earliest possible moment, to “pro-
vide evidence that [the project] is or is
not working.”

Conclusion

Other causes of failure could be added
ad nauseam, but the existence of addi-
tional factors is not the point. As Jones
noted, “There are myriad ways to fail.
... There are only a very few ways to
succeed.” [3] The factors of successful
project management have been docu-
mented for years—they merely need
greater attention. But if this article has
helped serve as a reality check for your
project, it will have served its purpose.
If you violate any of the principles noted
by the consultants and practitioners in
this article, you should not expect to
succeed in spite of yourself. O

About the Author

1 Lorin J. May is an
editor and columnist
for CrossTaLk: The
Journal of Defense Soft-
ware Engineering. He is
h-':"q_ employed by NCI

_ | Information Systems,
Inc., under contract to CrossTaLk at the
Software Technology Support Center. He
was previously an editor for two book
publishers and was a part-time freelance
writer. He has a bachelor’s degree in jour-
nalism from Weber State University in
Ogden, Utah.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Voice: 801-777-9239 DSN 777-9239
Fax: 801-777-8069 DSN 777-8069
E-mail: MayL@software.hill.af.mil

References

1. The Standish Group, “Chaos,” 1995,
http://ww.standishgroup.com/
chaos.html.

2. Brooks Jr., Frederick P, The Mythical
Man-Month (20th Anniversary Edition),
Addison-Wesley, Reading, Mass., 1995.

3. Jones, Capers, Patterns of Software Systems
Failure and Success, International Thomp-
son Computer Press, Boston, Mass.,
1996.

July 1998

Project Management Tools
and Software Failures and Successes

Capers Jones
Software Productivity Research, Inc.

The construction of large software systems is one of the most hazardous activities of the business world.
The failure or cancellation rate of large software systems is over 20 percent. Of the large systems that are
completed, about two thirds experience schedule delays and cost overruns that may approach 100 per-
cent. About the same number are plagued by low reliability and quality problems in the first year of
deployment. Yet, some large systems are finished early, meet their budgets, and have few if any quality
problems. How do successful projects differ from projects that fail? Better project management and better
quality control are the most important differences between success and failure in the software world.

oftware development is a trou-

bling technology. Software is

highly labor-intensive, and as a
result, large software projects are among
the most expensive undertakings of the
20th century. Large software systems
cost far more to build and take much
longer to construct than the office build-
ings occupied by the companies that
have commissioned the software. Ex-
tremely large software systems in the
100,000 function point size range can
cost more than building a domed foot-
ball stadium, a 50-story skyscraper, or a
70,000-ton cruise ship.

Consider what the phrase “large
systems” means in the context of six
different size plateaus separated by an
order of magnitude for each plateau. Size
is expressed in terms of function points,
a widely used synthetic metric based on
five external attibutes of software appli-
cations: inputs, outputs, inquiries, logi-
cal files, and interfaces. The average
number of C statements found within
the typical function point is provided as
a point of reference.

One Function Point (125 C
Statements)

There are few software applications of
this size except small enhancements to
larger applications or minor personal
applications. The schedules for such
small programs are usually only from a
day to perhaps a week.

Copyright 1997-1998 by Capers Jones, chairman,
SPR, Inc. All Rights Reserved.

July 1998

10 Function Points (1,250 C
Statements)

This is the typical size of end-user appli-
cations and also a tremendously frequent
size plateau for enhancements to existing
software. Development schedules are
usually less than one month.

100 Function Points (12,500 C
Statements)

This size is heavily populated with en-
hancements to existing applications. It is
also the practical upper limit of end-user
applications. There are few stand-alone
applications of this size in 1998, but 10
years ago there were a number of DOS
applications in this size range, such as
early BASIC interpreters. However,
there are many features of larger applica-
tions that approxim